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Abstract

Cross-domain recommendation (CDR) mitigates data spar-
sity and cold-start issues in recommendation systems. While
recent CDR approaches using graph neural networks (GNNs)
capture complex user-item interactions, they rely on manually
designed architectures that are often suboptimal and labor-
intensive. Additionally, extracting valuable behavioral infor-
mation from source domains to improve target domain rec-
ommendations remains challenging. To address these chal-
lenges, we propose Behavior importance-aware Graph Neural
Architecture Search (BiGNAS), a framework that jointly op-
timizes GNN architecture and data importance for CDR. BiG-
NAS introduces two key components: a Cross-Domain Cus-
tomized Supernetwork and a Graph-Based Behavior Impor-
tance Perceptron. The supernetwork, as a one-shot, retrain-
free module, automatically searches the optimal GNN archi-
tecture for each domain without the need for retraining. The
perceptron uses auxiliary learning to dynamically assess the
importance of source domain behaviors, thereby improving
target domain recommendations. Extensive experiments on
benchmark CDR datasets and a large-scale industry adver-
tising dataset demonstrate that BiGNAS consistently outper-
forms state-of-the-art baselines. To the best of our knowledge,
this is the first work to jointly optimize GNN architecture and
behavior data importance for cross-domain recommendation.

Code — https://github.com/gcd19/BiGNAS

Introduction
In recent years, the rapid growth of the Internet has led
to significant information overload in online environments.
To help users efficiently access content that matches their
interests and improve retention and conversion rates, rec-
ommendation systems have become crucial to web plat-
forms such as e-commerce and content delivery (Zhang et al.
2019, 2023a; Wang et al. 2024). However, traditional rec-
ommendation systems continue to face challenges like data
sparsity (Covington, Adams, and Sargin 2016; Guo et al.
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2017) and cold-start problems (Zhang et al. 2019), primar-
ily due to insufficient data. Cross-domain recommendation
(CDR) (Hu, Zhang, and Yang 2018; Ouyang et al. 2020; Cui
et al. 2020; Zhu et al. 2021; Cao et al. 2022; Ning et al.
2023) has emerged as a promising solution by aggregating
user preferences across multiple domains, alleviating these
issues.

Most existing CDR algorithms integrate user-item inter-
action structures (Hu, Zhang, and Yang 2018; Ouyang et al.
2020) to facilitate information transfer between domains, re-
sembling the ”cross-stitch” interaction models (Misra et al.
2016) used in multi-task learning. These methods often
employ separate neural networks for each domain, limit-
ing their ability to learn global user preferences effectively
across domains. Recently, GNN-based CDR methods (Cui
et al. 2020; Cao et al. 2022; Ning et al. 2023) have gained
attention by connecting interaction graphs from source and
target domains, enabling more effective information trans-
fer and capturing higher-order interaction patterns between
users and items across domains.

However, existing GNN-based cross-domain recommen-
dation algorithms still suffer from two key challenges:

• Model adaptability: Current approaches rely on fixed
architectures designed with domain-specific expert
knowledge, which is labor-intensive and limits adaptabil-
ity across different datasets and tasks.

• Negative transfer: In sparse source domains, methods
like attention mechanisms often overemphasize noisy
features, resulting in ineffective transfer and suboptimal
recommendations in the target domain.

To address the challenges of model adaptability and
negative transfer in cross-domain recommendation (CDR),
we propose Behavior importance-aware Graph Neural
Architecture Search (BiGNAS). BiGNAS is a novel frame-
work that jointly optimizes graph neural network (GNN)
architecture and data importance for CDR. It introduces
two key components: a Cross-Domain Customized Super-
network and a Graph-Based Behavior Importance Percep-
tron. The supernetwork, designed as a one-shot, retrain-free
module, automatically searches for the optimal GNN archi-
tecture tailored to each domain by capturing domain-specific



interaction patterns. Meanwhile, the perceptron uses auxil-
iary learning to dynamically assess the importance of user
behaviors in the source domain, allowing the model to prior-
itize valuable behaviors and improve target domain recom-
mendations.

To achieve end-to-end training, we employ bi-level op-
timization with implicit gradients, alternately training the
two modules. Extensive experiments on both benchmark
CDR datasets and a real-world industry advertising dataset
demonstrate that BiGNAS consistently outperforms state-
of-the-art baselines.

The contributions of our work are summarized as follows:

• We propose a joint optimization framework that au-
tonomously tailors GNN architectures and optimizes data
importance for CDR, addressing the unique requirements
of each domain. To the best of our knowledge, this is the
first work to explore joint optimization of graph neural
architecture and data importance in cross-domain recom-
mendation.

• We introduce the Graph-Based Behavior Importance Per-
ceptron, which leverages the graph structure of user-item
interactions to dynamically adjust the influence of user
behaviors during model training, enhancing the effective-
ness of cross-domain recommendation.

• We conduct extensive experiments on both benchmark
CDR datasets and a large-scale industry advertising
dataset, demonstrating superior performance compared
to existing state-of-the-art methods.

Related Works
Cross-domain Recommendation
Cross-domain recommendation (CDR) (Zhu et al. 2021) ad-
dresses data sparsity and cold-start challenges by aggregat-
ing user preferences across different domains. Early CDR
methods, like CMF (Singh and Gordon 2008), used matrix
factorization (MF) to integrate features across domains but
were limited by MF’s constraints in modeling user prefer-
ences.

Deep learning-based CDR models, such as CoNet (Hu,
Zhang, and Yang 2018) and MiNet (Ouyang et al. 2020),
improved performance by introducing cross-domain interac-
tion via shared projection matrices. However, they remained
limited to learning from known user-item pairs and strug-
gled to capture higher-order relationships among users and
items.

Graph neural networks (GNNs) have proven effective
in overcoming these limitations by modeling complex
user-item interactions and higher-order relationships. Hero-
GRAPH (Cui et al. 2020) constructs a heterogeneous graph
to represent interactions and leverages global and domain-
specific subgraphs for click-through rate prediction. Dis-
enCDR (Cao et al. 2022) further enhances CDR by disentan-
gling domain-shared and domain-specific user representa-
tions using a variational bipartite graph encoder and mutual-
information regularizers. EDDA (Ning et al. 2023) is a re-
cent leading CDR method, consisting of an embedding dis-
entangling recommender and a domain alignment strategy.

GNNs and Graph Neural Architecture Search
Graph neural networks (GNNs) (Kipf and Welling 2017;
Xu et al. 2019; Velickovic et al. 2018; Li, Wang, and Zhu
2023) have proven highly effective in learning node rep-
resentations via message-passing mechanisms. While their
primary applications include node and graph classification,
GNNs are also widely used across various domains (Zhang,
Cui, and Zhu 2022). In recommendation systems, where
users and items can be modeled as nodes and their inter-
actions as edges, GNNs offer a natural framework for rec-
ommendation tasks (Wu et al. 2022; Gao et al. 2023; Wang
et al. 2023; Zhang et al. 2024a). GNN-based models, such as
NGCF (Wang et al. 2019) and LightGCN (He et al. 2020),
have achieved significant performance gains in these tasks.

The design of neural network architectures remains a
challenging and labor-intensive process. Neural Architec-
ture Search (NAS) has emerged as an effective approach to
automate this process (Elsken, Metzen, and Hutter 2019).
Specifically, graph neural architecture search has gained mo-
mentum as a means to automate the design of GNNs (Zhang,
Wang, and Zhu 2021; Zhang et al. 2023c,b; Xie et al. 2023;
Zhang et al. 2024b; Yao et al. 2024; Zhang et al. 2024c; Xie
et al. 2024; Qin et al. 2023; Cai et al. 2024). GraphNAS (Gao
et al. 2020), a seminal method, defines a search space en-
compassing diverse architectural components and employs a
recurrent neural network controller. GNAS (Cai et al. 2021),
a one-shot approach, emphasizes feature filtering and neigh-
borhood aggregation, leveraging DARTS (Liu, Simonyan,
and Yang 2019) to optimize both weights and architecture.
PAS (Wei et al. 2021) targets graph classification tasks, of-
fering a search space that integrates aggregation, pooling,
readout, and merge functions, along with a coarsening strat-
egy to expedite the search. GASSO (Qin et al. 2021) simul-
taneously optimizes graph structure and GNN architecture,
whereas GAUSS (Guan et al. 2022) extends graph neural
architecture search to handle large-scale graphs containing
billions of nodes and edges.

To the best of our knowledge, this work is the first to ex-
plore graph neural architecture search for cross-domain rec-
ommendation.

The Proposed Method
In this section, we present our proposed method, a com-
prehensive and adaptable solution for cross-domain recom-
mendation through behavior importance-aware graph neu-
ral architecture search, applicable to both dual-domain and
multi-domain settings. The framework is illustrated in Fig-
ure 1.

Problem Formulation
Before introducing our model, we provide a concise
overview of the cross-domain recommendation problem. We
consider a scenario with N users and M items, where the
user-item interaction data is represented as a heterogeneous
graph G = (U, I, E). Here, U = {u1, u2, . . . , uN} denotes
the set of users, I = {i1, i2, . . . , iM} the set of items, and
E ⊆ U × I the set of user-item interactions. Each interac-
tion (u, i) ∈ E is labeled with a domain d ∈ D, where D
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Figure 1: The framework of BiGNAS is illustrated using dual-domain CDR. User behavior data from both domains is combined
into a unified heterogeneous interaction graph, which serves as the model’s input. The model adopts a bi-level structure: the
inner Cross-Domain Customized Supernetwork follows a one-shot, retrain-free paradigm to tailor the optimal GNN architecture
for each domain, while the outer Graph-Based Behavior Importance Perceptron dynamically evaluates the importance of source
domain user interactions through auxiliary learning, guiding model optimization. The two modules are trained alternately to
enable end-to-end optimization. The embedding e(i) is generated by the i-th layer of the supernetwork.

represents the set of domains, and a click label ye, where 1
indicates a click and 0 indicates no click.

Although recommendation involves multiple stages (e.g.,
candidate generation, ranking), this paper primarily focuses
on the click-through rate (CTR) prediction task, in line with
previous works (Ning et al. 2023; Ouyang et al. 2020). The
goal of cross-domain recommendation is to predict a user’s
preference for items in the target domain dT , leveraging sup-
plementary information from one or more source domains
dS ∈ D, where dS ̸= dT . Given interaction data GdS

from
the source domain and GdT

from the target domain, the task
is to learn a function f : U × I ×D → R that estimates the
likelihood of interaction between user u ∈ U and item i ∈ I
in the target domain dT .

In the dual-domain setting, where there is only one source
domain, this is referred to as dual-domain cross-domain rec-
ommendation. In the multi-domain setting, where multiple
source domains are involved, the function f must effec-
tively integrate information from multiple source domains
{dS1, dS2, . . . , dSk} to improve prediction accuracy in the
target domain dT , where k represents the number of source
domains.

It is worth noting that our method adapts to both dual-
domain and multi-domain CDR, optimizing data importance
and architecture to improve target domain recommendations
regardless of the source domain count.

Cross-Domain Graph Neural Architecture Search
The Cross-Domain Customized Supernetwork module aims
to identify the optimal graph neural network architecture for

each domain. In this paper, we employ a one-shot graph neu-
ral architecture search method that shares weights through a
supernet (Liu, Simonyan, and Yang 2019). The optimization
objectives are defined as:

a∗ = argmaxa∈AAUCvalid(a,G,w∗),

w∗ = argminwEa∈ALmain(a,G,w),
(1)

where a represents a graph neural network architecture, A
denotes the search space of all possible architectures, and
G = (U, I, E) is a heterogeneous interaction graph con-
structed solely from training data as described in the prob-
lem formulation section. The parameters of the supernet-
work are denoted by w, with w∗ representing the optimized
parameters. The best-performing architecture within the
search space is denoted by a∗. AUC, a commonly used eval-
uation metric for recommendation tasks, will be introduced
in the evaluation metric section. The term Lmain(a,G,w)
refers to the loss of architecture a on the training set. Specif-
ically, for the click-through rate prediction (CTR) problem
focused on in this paper, the loss can be computed as:

Lmain(a,G,w) = Ee∈EtrainL(a,G,w, e),

L(a,G,w, e) = BCE(ŷe, ye),
(2)

where BCE denotes the binary cross-entropy loss between
the predicted label ŷe and the true label ye, making it well-
suited for click-through rate prediction tasks.

To obtain the optimal architecture a∗, we first construct
a supernetwork S, following principles from the one-shot
NAS literature (Liu, Simonyan, and Yang 2019). The super-
network is an over-parameterized model that encompasses



all possible graph neural network architectures within the
search space A, blending multiple operations into a contin-
uous space, represented as:

f (i)(x) =
∑

o∈O
pioo(x), (3)

where x is the input, f (i)(x) is the output, O is the set of
candidate operations, o ∈ O is an operation, and pio is the
learnable weight of operation o in the i-th layer.

The weights pio are optimized via gradient descent. To
streamline this process, we maintain a single set of param-
eters for each operation across the layers. The optimization
of the supernetwork is formulated as:

{pio}∗ = argmin{pi
o}Ea∈ALmain(a,G, {pio}), (4)

where Lmain(a,G, {pio}) is the training loss for architecture
a on graph G, parameterized by the weights {pio} in the su-
pernetwork.

Unlike most NAS methods that discretize and retrain the
selected architecture, our approach retains a continuous ar-
chitecture, enabling end-to-end training without the need for
retraining. This continuous relaxation allows for simultane-
ous architecture search and training within the supernetwork
S, enabling direct optimization of the architecture a∗ using
gradient-based methods. This approach not only increases
flexibility but also streamlines the overall process.

Graph-Based Behavior Importance Perceptron
To optimize the supernetwork, we introduce the Graph-
Based Behavior Importance Perceptron, an outer module de-
signed to guide the learning process by evaluating the im-
portance of each interaction in the source domain S. This
is achieved by assigning weights to the loss of each sample
from the source domain. For illustration, consider two do-
mains, S and T , where T is the target domain. The training
loss is calculated as:

Lmain =
∑

l(ŷTj , yTj) +
∑

γSil(ŷSi, ySi), (5)

where Lmain represents the total loss for the target domain
T . Here, ySi and yTj are the true labels for edges eSi and
eTj from domains S and T , respectively, while ŷSi and ŷTj

are the corresponding predicted labels. The term γSi is the
importance weight assigned to interaction eSi from domain
S, and l(ŷ, y) denotes the binary cross-entropy (BCE) loss
function.

By setting eSi = (uk, vSl), the calculation of γSi is given
by:

γSi = γS · σ(γvSl
· γuk,vSl

), (6)
where σ(·) is a normalization function, γS is the domain
importance weight for domain S, γvSl

is the global impor-
tance weight for item vSl across the cross-domain interac-
tion graph G, and γuk,vSl

is the user-specific importance
weight for item vSl with respect to user uk.

During training, these weights are multiplied and normal-
ized across the domain, item, and user levels to produce the
final importance weight γSi for each source domain interac-
tion. This weighted loss then contributes to the overall model
optimization.

The calculations for the three types of importance weights
are as follows:

• γS : The domain importance weight, a scalar parameter
continuously updated during training.

• γvSl
: The global importance weight for items, computed

by processing the item node representation hvSl
(ob-

tained through architecture a∗) via a multi-layer percep-
tron (MLP).

• γuk,vSl
: The user-specific weight for items, determined

by applying a multi-layer GraphSAGE (Hamilton, Ying,
and Leskovec 2017) on Gtrain. The item representation
h′
vSl

and user representation huk
are concatenated and

further processed by an MLP.
In our approach, the Graph-Based Behavior Importance

Perceptron acts as the outer-level task-data scheduler, while
the backbone recommendation model—comprising the
Cross-Domain Customized Supernetwork S and the click-
through rate predictor—serves as the inner-level model. To-
gether, they form a bi-level optimization framework.

The outer-level perceptron is updated using a develop-
ment dataset derived from the training set through random
reorganization. Using the same data for both levels can hin-
der the outer model’s ability to enhance the inner model,
potentially leading to the collapse of the weight γS in Equa-
tion 5. To prevent this, we apply stochastic gradient descent
(SGD) with batch optimization, using distinct batches for
each level. This strategy avoids collapse and enables effi-
cient bi-level optimization without needing additional data
from the target domain.

To further optimize the outer-level perceptron, we employ
implicit gradients (Navon et al. 2021), commonly used in bi-
level optimization when direct gradient computation is im-
practical due to complexity or high computational cost.

The bi-level optimization problem in our model’s training
phase is formulated as:

ϕ∗ = argminϕLdev(θ
∗(ϕ)),

s.t. θ∗(ϕ) = argminθLmain(θ;ϕ),
(7)

where θ are the parameters of the inner-level cross-domain
recommendation model, ϕ are the parameters of the outer-
level perceptron, and Lmain is the training loss weighted by
the importance weight γSi calculated in Eq. (5) and Eq. (6).

The inner-level optimization seeks the parameters θ∗(ϕ)
that minimize Lmain(θ;ϕ), representing the optimal param-
eters of the cross-domain recommendation model for fixed
perceptron parameters. As ϕ changes, θ∗ also changes. The
outer-level optimization adjusts ϕ to ensure that the inner-
level model θ∗(ϕ) achieves optimal performance on the de-
velopment dataset Gdev in the target domain, where Gdev is
derived from reordering and reusing Gtrain.

Inner-Level Optimization. The inner-level model mini-
mizes Lmain with fixed perceptron parameters ϕ, using stan-
dard methods like SGD or Adam.

Outer-Level Optimization. The outer-level optimization
is more complex as Ldev depends indirectly on ϕ through θ.
Thus, the gradient ∇ϕLdev(θ(ϕ)) requires the Chain Rule:

∇ϕLdev(θ
∗(ϕ)) = ∇θLdev(θ

∗(ϕ))∇ϕθ
∗(ϕ). (8)

While ∇θLdev(θ
∗(ϕ)) can be computed via automatic dif-

ferentiation, calculating ∇ϕθ
∗(ϕ) requires:

∇θLmain(θ
∗(ϕ), ϕ) = 0. (9)



Taking gradients w.r.t. ϕ, we get:

∇ϕθ
∗(ϕ) = −(∇2

θLmain)
−1∇ϕ∇θLmain, (10)

where the Hessian inverse (∇2
θLmain)

−1 is approximated by
the K-truncated Neumann series:

(∇2
θLmain)

−1 ≈
K∑

n=0

(I−∇2
θLmain)

n. (11)

Thus, the implicit gradient for the outer-level perceptron is:

∇ϕLdev = −∇θLdev ·
K∑

n=0

(I−∇2
θLmain)

n · ∇ϕ∇θLmain.

(12)
This can be efficiently computed using the Vector-

Jacobian Product method (Lorraine, Vicol, and Duvenaud
2020).

Using this iterative approach, the outer-level perceptron
and the inner-level recommendation model are fine-tuned al-
ternately. After the inner model converges with the current
perceptron parameters, the perceptron is updated. Repeating
this process throughout training ensures the convergence of
both models, allowing BiGNAS to jointly optimize the rec-
ommendation architecture and behavior data importance.

Click-Through Rate Predictor
The GNN-based cross-domain supernet computes node rep-
resentations, denoted as h. For click-through rate pre-
diction, we follow methods like NGCF (Wang et al.
2019) and compute the input for the predictor as h∗

ij =

(h
(0)
ui ||h

(1)
ui ||h

(2)
ui )||(h

(0)
vj ||h

(1)
vj ||h

(2)
vj ), where h(k) represents

node embeddings from the k-th GNN layer, and || denotes
vector concatenation. This strategy preserves both node and
multi-order neighbor information, enhancing the model’s
ability to capture intricate user-item interaction patterns.

Using h∗
ij as input, a multi-layer MLP predicts the click-

through rate, ŷ = σ(MLP(h∗
ij)), where σ is the sigmoid

function, ensuring the prediction remains between (0, 1).

Experiments
In this section, we report empirical evaluations of our
method. First, we introduce the experimental setup. Then,
we report the results on benchmark datasets and our col-
lected industry dataset. Finally, we conduct ablation studies
and discuss hyper-parameters.

Experimental Setup
Datasets In this paper, we use the Amazon Product 5-core
dataset (McAuley et al. 2015; He and McAuley 2016) for
dual-domain recommendation due to its broad user inter-
actions across diverse product categories, which makes it a
standard choice for cross-domain recommendation (CDR)
research. Additionally, we construct an industry advertising
dataset from real-world production data for multi-domain
recommendation.

The Amazon dataset consists of 143M product reviews
across 24 categories (e.g., books, clothing, movies) collected

Task Domain Users Items Interactions Density

Bo-Mo
Books

37,387
49,273 792,314 0.043%

Movies 236,530 945,028 0.011%

Bo-CD
Books

16,738
150,190 418,603 0.017%

CDs 61,201 380,675 0.037%

Bo-El
Books

28,506
203,698 735,192 0.013%

Elec 52,134 364,267 0.025%

Bo-To
Books

7,576
117,771 317,503 0.036%

Toys 11,567 84,564 0.096%

CD-Cl
CDs

1,390
17,707 27,128 0.110%

Cloth 8,074 12,312 0.110%

CD-Ki
CDs

2,809
28,253 53,995 0.068%

Kitchen 14,274 37,559 0.094%

El-Cl
Elec

8,235
31,484 99,594 0.038%

Cloth 18,703 66,470 0.043%

Table 1: Statistics for the Amazon dataset.

Task Domain Users Items Interactions Density

Task 1 S1
47,330

222,336 6,848,744 0.065%
Task 2 S2 150,078 6,615,576 0.093%
Task 3 S3 189,928 6,539,810 0.073%

Table 2: Statistics for the industry advertising dataset.

between 1996 and 2014, with each category representing
a domain. Due to limited user overlap across multiple do-
mains, we focus on dual-domain recommendation tasks, us-
ing the same domain pairs and splits as in BIAO (Chen et al.
2023a). The industry dataset, sourced from a social platform,
contains 20M records across three usage scenarios (S1, S2,
S3) with shared users. This dataset mitigates the Amazon
dataset’s limitations in multi-domain tasks by ensuring suf-
ficient data overlap. User data is grouped by traits such as
age, gender, and location and hashed for privacy.

Table 1 and Table 2 summarize the dataset statistics, in-
cluding the number of users, items, interactions, and inter-
action density across various domains.

Baseline Models In this paper, we select eight state-
of-the-art recommendation models, covering both single-
and cross-domain approaches, as our baselines. Since our
method builds on a graph neural network (GNN) recommen-
dation algorithm, we compare it with leading GNN-based
techniques.

For single-domain recommendation, we include tradi-
tional matrix factorization methods such as BPR-MF (Ren-
dle et al. 2009) and GNN-based models like NGCF (Wang
et al. 2019) and LightGCN (He et al. 2020).

In the cross-domain category, we evaluate two types of
models. The first includes CoNet (Hu, Zhang, and Yang
2018) and MiNet (Ouyang et al. 2020), which share infor-



mation across domains using cross-stitching and attention-
based interest balancing. CoNet-B and MiNet-B are BIAO-
enhanced variants (Chen et al. 2023a), leveraging auxiliary
learning (Chen et al. 2023b, 2022a,b) to improve informa-
tion transfer between domains.

We also consider state-of-the-art cross-domain GNN
models like HeroGRAPH (Cui et al. 2020), DisenCDR (Cao
et al. 2022), and EDDA (Ning et al. 2023), which use ad-
vanced techniques such as heterogeneous graph modeling,
disentanglement, and domain alignment for superior perfor-
mance across multiple domains.

Evaluation Metric We evaluate the CTR task using two
widely-used metrics: area under the curve (AUC) and log
loss. Additionally, we compute the relative improvement
(RelaImpr) for both metrics to measure performance gains
over the baseline model.

AUC measures the area under the receiver operating char-
acteristic curve, ranging from 0 to 1, where higher values
indicate better performance. Log loss, also known as bi-
nary cross-entropy loss, evaluates the accuracy of the pre-
dicted probabilities, with lower values indicating better per-
formance.

RelaImpr calculates the relative improvement of the target
model over a baseline for both AUC and log loss. For AUC,
since random predictions yield 0.5, RelaImpr is computed as
RelaImprAUC =

(
AUCtarget−0.5

AUCbaseline−0.5 − 1
)
×100%. For log loss, it

is defined as RelaImprLogLoss =
(

Log Lossbaseline
Log Losstarget

− 1
)
× 100%.

Implementation All methods are implemented in Py-
Torch and PyTorch Geometric (Fey and Lenssen 2019).
The supernetwork consists of two layers, with a GNN ar-
chitecture search space specifically designed for recom-
mendation tasks, including GCN (Kipf and Welling 2017),
GAT (Velickovic et al. 2018), GraphSAGE (Hamilton, Ying,
and Leskovec 2017), LightGCN (He et al. 2020), and a Lin-
ear layer.

During training, we employ an early stopping strategy
with a maximum of 100 epochs, and a 10-epoch warm-up
before bi-level optimization, using Adam as the optimizer.
Each method is run with five different random seeds, with
performance metrics reported as the average of these runs.
To ensure the robustness of the model comparisons, we per-
form significance tests to rule out the possibility of results
occurring by chance.

Computational Complexity Analysis Let |V | and |E| de-
note the number of nodes and edges in the heterogeneous
graph, and d the dimensionality of hidden representations.
The time complexity of most GNNs is O(|E|d + |V |d2).
With O as the set of candidate operations, the time com-
plexity of our graph neural architecture search (GNAS)
method becomes O(|O|(|E|d + |V |d2)). In terms of learn-
able parameters, the complexity is O(d2) for most GNNs
and O(|O|d2) for GNAS. Thus, the use of GNAS only intro-
duces a linear increase in complexity, which adds minimal
computational overhead, ensuring that our method remains
efficient and scalable.

Experimental Results
Table 3 presents the experimental results for our BiGNAS
and baseline models on both the Amazon and industry ad-
vertising datasets. The key observations are as follows:

BiGNAS achieves the highest performance across most
tasks and datasets on both metrics, with AUC improvements
of up to 10.57% on the Amazon dataset and 4.61% on the in-
dustry dataset compared to the best baseline. Notably, BiG-
NAS performs better in tasks with limited data overlap, such
as CD-Cl and EL-Cl, than in tasks with more overlap (e.g.,
Bo-Mo, Bo-CD). This suggests that while baseline mod-
els capture patterns effectively in data-rich tasks, BiGNAS’s
flexibility excels in sparser scenarios.

We select AUC as the main metric and report the test
results of the model with the highest AUC score on the
validation set. Consequently, some inconsistencies are ob-
served between the improvements in AUC and LogLoss.
Compared to the strongest baseline, EDDA, BiGNAS con-
sistently demonstrates superior performance. EDDA priori-
tizes similarity in embeddings across domains but neglects
domain-specific variability. In contrast, BiGNAS leverages
both domain-specific and shared information, resulting in
better performance.

Furthermore, CDR methods consistently outperform
single-domain models across all ten tasks. Even though
single-domain models are trained with the full data from
both source and target domains, their inability to transfer in-
formation between domains limits their effectiveness, lead-
ing to inferior performance compared to CDR methods.

Lastly, GNN-based methods, such as DisenCDR and
EDDA, outperform MLP-based methods like MiNet and
CoNet. This is likely due to GNNs’ ability to capture higher-
order dependencies through neighbor aggregation, making
them better suited for uncovering latent user preferences.
This further justifies our decision to incorporate graph-based
learning in BiGNAS .

Ablation Study
In this section, we conduct an ablation study to assess the
impact of individual components in our framework. The
model variants compared are as follows:
• MANUAL: Uses a fixed, optimal manually designed

GNN architecture applied uniformly across all domains,
without dynamic customization.

• MIX: Removes the Cross-Domain Customized Super-
network, assigning equal weights to all operations, to as-
sess the effect of architecture customization.

• DISCRETE: Replaces continuous relaxation with dis-
crete architectures, following DARTS (Liu, Simonyan,
and Yang 2019), to compare continuous versus discrete
optimization.

• NO-SOURCE: Excludes source domain data, evaluating
the role of cross-domain information for target domain
recommendations.

• NO-IMPO: Removes the Graph-Based Behavior Impor-
tance Perceptron, treating all source domain user behav-
iors equally, to assess the impact of dynamic interaction
weighting.



Task Metric Single-Domain Methods Cross-Domain Methods Ours
BPRMF NGCF LightGCN MiNet-B CoNet-B HeroGraph DisenCDR EDDA BiGNAS RelaImpr

A
m

az
on

Bo-Mo AUC 0.6799 0.7514 0.7347 0.7639 0.7721 0.7537 0.7653 0.7731 0.7795* +2.34%
LogLoss 0.5405 0.4620 0.4844 0.4697 0.4571 0.4649 0.4664 0.4554 0.4520* +3.19%

Bo-CD AUC 0.6210 0.7024 0.6981 0.7145 0.7274 0.7172 0.7228 0.7291 0.7456* +7.20%
LogLoss 0.5410 0.4217 0.4308 0.3924 0.4018 0.3950 0.3959 0.3865 0.3846* +0.49%

Bo-El AUC 0.6252 0.6782 0.6645 0.6678 0.6864 0.6800 0.6913 0.6814 0.7002* +1.29%
LogLoss 0.6504 0.5391 0.4928 0.5015 0.4731 0.4696 0.4674 0.4933 0.4581* +2.03%

Bo-To AUC 0.6309 0.7030 0.6836 0.6883 0.7048 0.6902 0.7038 0.7065 0.7268* +9.83%
LogLoss 0.5667 0.4871 0.4338 0.4425 0.4289 0.4166* 0.4520 0.4400 0.4195 -0.69%

CD-Cl AUC 0.5428 0.6353 0.6562 0.6020 0.6176 0.6602 0.6832 0.6761 0.6949* +1.71%
LogLoss 0.6924 0.5537 0.5242 0.5813 0.5767 0.5358 0.4745 0.4533 0.4268* +6.21%

CD-Ki AUC 0.6090 0.6390 0.6681 0.6212 0.6558 0.6745 0.6954 0.6974 0.7090* +5.88%
LogLoss 0.5652 0.4821 0.4254 0.4381 0.4263 0.4268 0.4177 0.4088 0.3968* +3.02%

El-Cl AUC 0.5694 0.6257 0.6193 0.6099 0.6308 0.6264 0.6388 0.6410 0.6559* +10.57%
LogLoss 0.6079 0.5143 0.5028 0.5783 0.5261 0.4804 0.5399 0.5073 0.4738* +1.40%

In
du

st
ry

Task 1 AUC 0.6734 0.7459 0.7010 0.7547 0.7621 0.7447 0.7792 0.7906 0.8146* +3.04%
LogLoss 0.5479 0.4843 0.4691 0.4807 0.4452 0.4765 0.4470 0.4315 0.4207* +2.57%

Task 2 AUC 0.6315 0.6804 0.6817 0.7349 0.7596 0.7225 0.7662 0.7643 0.7862* +2.61%
LogLoss 0.5931 0.5206 0.4943 0.4800 0.4758 0.5371 0.4889 0.4667 0.4461* +4.63%

Task 3 AUC 0.6653 0.6993 0.7324 0.7415 0.7673 0.7328 0.7517 0.7723 0.8079* +4.61%
LogLoss 0.5043 0.4799 0.4854 0.4810 0.4317 0.4621 0.4353 0.4264 0.4053* +5.21%

Table 3: Overall experimental results of our model BiGNAS and the baselines models. The best results are in bold, while the
second best results are underlined. We executed each method with 5 random seeds and presented the mean performance. The
superscript * indicates the results of a paired t-test at the 0.05 significance level, comparing our approach against the strongest
baseline methods. RelaImpr represents the relative improvement over the best-performing baseline.

We evaluate the model variants on four tasks from the
Amazon dataset, with results summarized in Figure 2. Our
complete BiGNAS consistently outperforms all alternatives
across all tasks, underscoring the importance of each com-
ponent in cross-domain recommendation. Notably, remov-
ing source domain information (NO-SOURCE) results in
a significant average performance drop of 5.8%, while re-
moving the Graph-Based Behavioral Importance Perceptron
(NO-IMPO) causes a smaller decline of 4.3%. These find-
ings highlight the critical role of both modules.
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Figure 2: The recommendation performance of different
variants of BiGNAS.

The MIX variant, which incorporates all candidate op-
erations without customizing the GNN architecture, con-
sistently achieves superior performance compared to most
other variants, highlighting the effectiveness of integrating
multiple message-passing layers to enhance recommenda-
tion quality. In contrast, the MANUAL variant, which uti-
lizes the best manually designed architecture, delivers rel-
atively suboptimal results. However, it is noteworthy that
MANUAL still outperforms the DISCRETE variant, which
relies on discrete architectures generated through traditional
NAS methods. This difference in performance is likely at-
tributed to the training approach of the supernet. The DIS-
CRETE variant faces retraining inconsistencies between val-
idation and test sets, while BiGNAS resolves this by contin-
uously optimizing the architecture without retraining, ensur-
ing consistent performance.

Conclusion
In this paper, we propose BiGNAS, a framework that jointly
optimizes GNN architecture and data importance for cross-
domain recommendation. Our method automatically cus-
tomizes the optimal GNN architecture for each domain and
dynamically assesses the importance of user behaviors from
the source domain. Extensive experiments on benchmark
and real-world datasets demonstrate that BiGNAS consis-
tently outperforms state-of-the-art baselines in both dual-
domain and multi-domain settings, validating its effective-
ness for cross-domain recommendation.



Acknowledgments
This work was supported by the National Key Research and
Development Program of China No. 2023YFF1205001, Na-
tional Natural Science Foundation of China No. 62222209,
Beijing National Research Center for Information Sci-
ence and Technology under Grant No. BNR2023TD03006,
BNR2023RC01003, and Beijing Key Lab of Networked
Multimedia.

References
Cai, J.; Wang, X.; Li, H.; Zhang, Z.; and Zhu, W. 2024.
Multimodal Graph Neural Architecture Search under Dis-
tribution Shifts. In Proceedings of the AAAI Conference on
Artificial Intelligence, 8227–8235.
Cai, S.; Li, L.; Deng, J.; Zhang, B.; Zha, Z.; Su, L.;
and Huang, Q. 2021. Rethinking Graph Neural Archi-
tecture Search From Message-Passing. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 6657–6666.
Cao, J.; Lin, X.; Cong, X.; Ya, J.; Liu, T.; and Wang, B.
2022. DisenCDR: Learning Disentangled Representations
for Cross-Domain Recommendation. In Proceedings of the
45th International ACM SIGIR Conference on Research and
Development in Information Retrieval, 267–277.
Chen, H.; Wang, X.; Guan, C.; Liu, Y.; and Zhu, W. 2022a.
Auxiliary Learning with Joint Task and Data Scheduling. In
Proceedings of the 39th International Conference on Ma-
chine Learning, 3634–3647.
Chen, H.; Wang, X.; Liu, Y.; Zhou, Y.; Guan, C.; and
Zhu, W. 2022b. Module-Aware Optimization for Auxiliary
Learning. In Advances in Neural Information Processing
Systems, 31827–31840.
Chen, H.; Wang, X.; Xie, R.; Zhou, Y.; and Zhu, W.
2023a. Cross-domain Recommendation with Behavioral
Importance Perception. In Proceedings of the ACM Web
Conference, 1294–1304.
Chen, H.; Wang, X.; Zhou, Y.; Qin, Y.; Guan, C.; and Zhu,
W. 2023b. Joint Data-Task Generation for Auxiliary Learn-
ing. In Advances in Neural Information Processing Systems,
13103–13114.
Covington, P.; Adams, J.; and Sargin, E. 2016. Deep Neu-
ral Networks for YouTube Recommendations. In Proceed-
ings of the 10th ACM Conference on Recommender Systems,
191–198.
Cui, Q.; Wei, T.; Zhang, Y.; and Zhang, Q. 2020. Hero-
GRAPH: A Heterogeneous Graph Framework for Multi-
Target Cross-Domain Recommendation. In ORSUM@ Rec-
Sys.
Elsken, T.; Metzen, J. H.; and Hutter, F. 2019. Neural Ar-
chitecture Search: A Survey. Journal of Machine Learning
Research, 20(55): 1 – 21.
Fey, M.; and Lenssen, J. E. 2019. Fast graph representation
learning with PyTorch Geometric. In ICLR Workshop on
Representation Learning on Graphs and Manifolds.
Gao, C.; Zheng, Y.; Li, N.; Li, Y.; Qin, Y.; Piao, J.; Quan,
Y.; Chang, J.; Jin, D.; He, X.; and Li, Y. 2023. A Survey of

Graph Neural Networks for Recommender Systems: Chal-
lenges, Methods, and Directions. ACM Transactions on Rec-
ommender Systems, 1(1): 1–51.
Gao, Y.; Yang, H.; Zhang, P.; Zhou, C.; and Hu, Y. 2020.
Graph Neural Architecture Search. In Proceedings of the
Twenty-Ninth International Joint Conference on Artificial
Intelligence, 1403–1409.
Guan, C.; Wang, X.; Chen, H.; Zhang, Z.; and Zhu, W. 2022.
Large-Scale Graph Neural Architecture Search. In Pro-
ceedings of the 39th International Conference on Machine
Learning, volume 162, 7968–7981.
Guo, H.; Tang, R.; Ye, Y.; Li, Z.; and He, X. 2017. DeepFM:
a factorization-machine based neural network for CTR pre-
diction. In Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence, 1725–1731.
Hamilton, W. L.; Ying, Z.; and Leskovec, J. 2017. Inductive
Representation Learning on Large Graphs. In Advances in
Neural Information Processing Systems, 1024–1034.
He, R.; and McAuley, J. J. 2016. Ups and Downs: Modeling
the Visual Evolution of Fashion Trends with One-Class Col-
laborative Filtering. In Proceedings of the ACM Web Con-
ference, 507–517.
He, X.; Deng, K.; Wang, X.; Li, Y.; Zhang, Y.; and Wang, M.
2020. LightGCN: Simplifying and Powering Graph Convo-
lution Network for Recommendation. In Proceedings of the
43rd International ACM SIGIR Conference on Research and
Development in Information Retrieval, 639–648.
Hu, G.; Zhang, Y.; and Yang, Q. 2018. CoNet: Collabo-
rative Cross Networks for Cross-Domain Recommendation.
In Proceedings of the 27th ACM International Conference
on Information and Knowledge Management, 667–676.
Kipf, T. N.; and Welling, M. 2017. Semi-Supervised Clas-
sification with Graph Convolutional Networks. In Interna-
tional Conference on Learning Representations.
Li, H.; Wang, X.; and Zhu, W. 2023. Curriculum graph
machine learning: a survey. In Proceedings of the Thirty-
Second International Joint Conference on Artificial Intelli-
gence, 6674–6682. Survey Track.
Liu, H.; Simonyan, K.; and Yang, Y. 2019. DARTS: Differ-
entiable Architecture Search. In International Conference
on Learning Representations.
Lorraine, J.; Vicol, P.; and Duvenaud, D. 2020. Optimizing
Millions of Hyperparameters by Implicit Differentiation. In
Proceedings of the Twenty Third International Conference
on Artificial Intelligence and Statistics, volume 108, 1540–
1552.
McAuley, J. J.; Targett, C.; Shi, Q.; and van den Hengel, A.
2015. Image-Based Recommendations on Styles and Substi-
tutes. In Proceedings of the 38th international ACM SIGIR
conference on research and development in information re-
trieval, 43–52.
Misra, I.; Shrivastava, A.; Gupta, A.; and Hebert, M. 2016.
Cross-Stitch Networks for Multi-task Learning. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 3994–4003.



Navon, A.; Achituve, I.; Maron, H.; Chechik, G.; and Fe-
taya, E. 2021. Auxiliary Learning by Implicit Differentia-
tion. In International Conference on Learning Representa-
tions.
Ning, W.; Yan, X.; Liu, W.; Cheng, R.; Zhang, R.; and Tang,
B. 2023. Multi-domain Recommendation with Embedding
Disentangling and Domain Alignment. In Proceedings of
the 32nd ACM International Conference on Information and
Knowledge Management, 1917–1927.
Ouyang, W.; Zhang, X.; Zhao, L.; Luo, J.; Zhang, Y.; Zou,
H.; Liu, Z.; and Du, Y. 2020. MiNet: Mixed Interest Net-
work for Cross-Domain Click-Through Rate Prediction. In
Proceedings of the 29th ACM international conference on
information & knowledge management, 2669–2676.
Qin, Y.; Wang, X.; Zhang, Z.; Chen, H.; and Zhu, W. 2023.
Multi-task Graph Neural Architecture Search with Task-
aware Collaboration and Curriculum. In Advances in Neural
Information Processing Systems, 24879–24891.
Qin, Y.; Wang, X.; Zhang, Z.; and Zhu, W. 2021. Graph
Differentiable Architecture Search with Structure Learn-
ing. In Advances in Neural Information Processing Systems,
16860–16872.
Rendle, S.; Freudenthaler, C.; Gantner, Z.; and Schmidt-
Thieme, L. 2009. BPR: Bayesian Personalized Ranking
from Implicit Feedback. In Proceedings of the Twenty-Fifth
Conference on Uncertainty in Artificial Intelligence, 452–
461.
Singh, A. P.; and Gordon, G. J. 2008. Relational learning
via collective matrix factorization. In Proceedings of the
14th ACM SIGKDD international conference on Knowledge
discovery and data mining, 650–658.
Velickovic, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò,
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